Multiscale Analysis in Sobolev Spaces on the Sphere

نویسندگان

  • Quoc Thong Le Gia
  • Ian H. Sloan
  • Holger Wendland
چکیده

We consider a multiscale approximation scheme at scattered sites for functions in Sobolev spaces on the unit sphere Sn. The approximation is constructed using a sequence of scaled, compactly supported radial basis functions restricted to Sn. A convergence theorem for the scheme is proved, and the condition number of the linear system is shown to stay bounded by a constant from level to level, thereby establishing for the first time a mathematical theory for multiscale approximation with scaled versions of a single compactly supported radial basis function at scattered data points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale analysis for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere

In this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel.

متن کامل

Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere

In this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel.

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

On the stability of Powell–Sabin Wavelets

Recently we developed multiscale spaces of C piecewise quadratic polynomials relative to arbitrary polygonal domains Ω ⊂ R. These multiscale bases are weakly stable with respect to the L2 norm. In this paper we show that these bases form strongly stable Riesz bases for the Sobolev spaces Hs(Ω) with s ∈ (2, 5 2 ).

متن کامل

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2010